Limnol. Oceanogr., 44(4), 1999, 1056–1071
نویسندگان
چکیده
Odor plumes are common features of aquatic and terrestrial environments, forming an olfactory landscape through which animals must navigate to locate resources and avoid potential hazards. Time-averaged concentration profiles suggest that plumes consist of stable gradients in odor that animals may use for orientation. However, the time scales necessary to generate such profiles are much longer than those typically associated with the neural or behavioral components of odor-mediated search. In contrast, plume measurements made at biologically relevant scales have indicated that turbulent plumes consist of discrete odor filaments separated by clean water. In addition, certain characteristics of individual odor filaments may vary consistently with distance from the odor source, thus providing directional information to a navigating organism. Unfortunately, there is no method to predict the distribution of these putative chemical cues, and our knowledge of odor dispersal is limited to very few laboratory flume studies. Here, we present the results of a field study during which we measured the distributions of the time-averaged concentration, properties of odor filaments, conditional statistics, and relevant hydrodynamic mixing parameters. Many of the observed odor plume characteristics have similar spatial distributions through a range of hydrodynamic conditions. The high degree of similarity in the distribution of many odor plume characteristics suggests that organisms can rely on any number of metrics to successfully orient in an odor plume. However, the temporal and spatial scales of odor dispersal may constrain the strategies used by navigating organisms and influence the efficiency of odor-mediated search. These field results should provide the basis for further empirical and theoretical work on chemosensory-mediated behavior of aquatic animals. Olfaction is one of the most commonly used sensory systems for navigation and communication (Dusenbury 1992). 1 Present address: Patrick Center for Environmental Research, Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103-1195.
منابع مشابه
Limnol. Oceanogr., 44(4), 1999, 1184
that I can easily take to sea and consult as an authoritative reference. This book is not just an updated version of the Clay and Medwin predecessor—it is much more comprehensive, containing a good blend of theory and hard-won data from measurements made at sea and in the lab. The fact that its list price is less than the current price of the earlier book is an unexpected bonus! I strongly reco...
متن کاملLimnol. Oceanogr., 44(2), 1999, 447–454
Geophysical and ecological dynamics within lakes of the McMurdo Dry Valleys, Antarctica, are controlled by the presence of permanent ice covers. Despite the importance of the permanent ice cover, there have been no studies that have examined specific couplings between changes in the geophysical properties of the ice covers and dynamic ecological processes within the underlying water column. Her...
متن کاملMeasuring the ecological significance of microscale nutrient patches
parative rapid ammonium uptake by four species of marine phytoplankton. Limnol. Oceanogr. 27: 814-827. -, J. J. MCCARTHY, AND D. G. PEAVEY. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210-215. HEALEY, F. P. 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb. Ecol. 5: 281-286. HUTCHINSON, G. E...
متن کاملLimnol. Oceanogr., 44(6), 1999, 1359–1369
The effects of a major storm event (Hurricane Gordon) on the biogeochemistry of Atlantic coastal and Gulf Stream waters were investigated during a research cruise in November 1994. Prestorm, NH , NO , and PO 1 2 23 4 3 4 concentrations were consistently well below 1 mM, whereas after the storm, nutrient concentrations were higher in the surface-water samples: .2 mM, in some instances. Primary a...
متن کاملLimnol. Oceanogr., 44(3), 1999, 699–702
Results of a 12-yr study in an oligotrophic South Carolina salt marsh demonstrate that soil respiration increased by 795 g C m22 yr21 and that carbon inventories decreased in sediments fertilized with nitrogen and phosphorus. Fertilized plots became net sources of carbon to the atmosphere, and sediment respiration continues in these plots at an accelerated pace. After 12 yr of treatment, soil m...
متن کامل